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ABSTRACT 

Numerical works are conducted to develop a 
visualization technique for the phase distribution 
in a two-phase system by electrical impedance 
tomography technique, which reconstructs the 
conductivity distribution with the electrical 
responses that are determined by corresponding 
excitations. For the two-phase flow system, the 
impedance of each phase can be known but 
instead the phase boundary depending on the 
distribution of dispersed phase is of interest. In 
the present study, the image reconstruction 
problem is derived as a boundary estimation one 
and a new algorithm is developed for the 
estimation of phase boundary based on the front 
points tracking technique. To test the robustness 
of the proposed algorithm some numerical 
simulations are conducted. Numerical works 
show that the proposed algorithm can treat two-
phase systems reasonably even with some errors 
in measurement data.  

 
 

INTRODUCTION 
Two-phase flow can occur under the normal 

and accidental conditions in various processes 
such as heat exchanger, steam power generation 
and oil or natural gas pumping system. Because 
the heterogeneous phase affects the safety, control, 
operation and optimization of process, it is 
important to know the phase boundaries in on-line 
without disturbing the flow field. Recently, the 
electrical tomography technique is employed to 
investigate two-phase flow phenomena, because it 
is relatively inexpensive and has good time 
resolution. In the present study, an electrical 

impedance tomography (EIT) measurement 
system and an image reconstruction algorithm 
were developed for the detection and 
visualization of multi-phase flow.  

Since it is well-known that the conventional 
regularized Newton-Raphson can hardly identify 
the phase boundary even for the two-phase 
systems [1, 2], some novel attempts to reconstruct 
two-phase image were made on the basis of mesh-
grouping [3, 4], adaptive mesh regeneration [5], 
and adaptive mesh refinement algorithms [6]. The 
key idea of the mesh grouping resorts to the fact 
that two-phase flow has only two conductivity 
values. After ordinary iteration procedures, 
meshes having similar conductivity values and 
progresses are classified into three groups, 
namely base group (e.g. liquid), object group (e.g. 
vapor) and unadjusted group, then each of the 
base group and the object group is thought of as a 
single mesh with a corresponding unknown 
conductivity. As a consequence, the number of 
unknowns can be reduced and the sensitivity to 
the conductivity change is magnified. In the 
adaptive mesh regeneration, to avoid the blurred 
image reconstructed by conventional algorithms 
the FEM mesh structure is fitted adaptively to the 
real phase boundaries. In the adaptive mesh 
refinement, an emphasis is placed on the increase 
of the computational efficiency when the meshes 
are refined to obtain the EIT images with higher 
spatial resolution. Molinari et al. [7] developed an 
algorithm which automatically produced finer 
meshes in areas where there were sharp gradients 
of conductivity distribution in the EIT images 
based on an a posteriori error estimate in order to 
adapt the mesh structure to phase boundaries. 
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Recently, boundary estimation technoque [8] are 
introduced for the two-phase flow system where 
the impedance of each phase doesn't change but 
instead the phase boundary depends on the 
distribution of dispersed phase. In this method, 
the boundary shape and loaction are estimated 
rather than the conductivities of each pahse.  

In the present study, a new reconstruction 
algorithm for electric impedance imaging 
technique is introduced to visualization of phase 
distribution in two-phase systems. The phase 
boundaries are expressed as the discrete front 
points points located discretely along the 
boundary rather than Fourier series which was 
commonly used in most previous works for the 
boundary estimation and the front points are 
tracked with the aid of inverse problem algorithm 
n the context of finite element calculation.  i 

 
MATHEMATICAL MODEL  
 
Definition of the Problem 

Let denote a bounded domain and 
assume that Ω  is divided into m  disjoint 
regions  which are bounded by smooth closed 
boundary curves and have constant conductivity 
values . 
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Let ,  denote the smooth 
boundary of region S . Assume that 
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Figure 1. Example of a piecewise constant 
domain. 

region nd the values{ }kσ  are known a priori but 
some details of the geometrical information on 
the boundaries { }lC  are boundaries {  with the }lC
known conductivity values and the known 
boundary current inputs and potentials. This 
situation occurs in the multiphase flow 
visualization problem where the boundary of 
system and the physical properties such as 
electrical conductivity are known a priori but the 
phase boundaries are to be determined. Figure 1 
shows the topology of the problem domain. 

In the present study, a novel algorithm to 
estimate the phase boundaries based on the EIT 
technique will be proposed. In the proposed 
method, the shape and location of boundaries 
{ }lC  are approximated as an interpolation with 
front points located discretely along the boundary 
instead of Fourier series which was used in most 
previous works for the boundary estimation [5, 8] 
and the aid of forward problem of EIT which is 
based on the finite element method (FEM) 
discretization.  The inverse problem is to find , 
the shape and location of boundaries {  with 
the applied input current and the measured 
boundary voltages. The details of the forward and 
the inverse problems are discussed below.  

}lC

l

 
Forward Problem 

When electrical currents I are 

injected into the object Ω through the 
electrodes 

( )L,,2,1 Ll =
2ℜ∈

( )L , 2, 1, Llle = attached on the 
boundary Ω∂  and the conductivity distribution is 
known over the Ω , the corresponding electrical 
potential ( )xu  on the Ω  can be determined 
uniquely from the partial differential equation, 
which can be derived from the Maxwell's 
equations, and the Neuman type boundary 
conditions 
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where  is the l th electrode, ν  is the outward 
directed unit normal vector and L  is the number 

le '
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of electrodes. Various forms of the boundary 
conditions to treat electrodes have been derived, 
and we employ the complete electrode model 
(CEM) which takes into account the discrete 
electrodes, the effects of the contact impedance, 
and the shunting effect of the electrodes. In the 
CEM, the boundary voltages on the electrodes are 
obtained as: 
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where  is the effective contact impedance 
between the l th electrode and the object, and 

 is the voltage on the l th electrode. In 
addition, the following two conditions for the 
injected current and measured voltages are needed 
to ensure the uniqueness of the solution. 
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In general, the forward problem cannot be solved 
analytically, thus we have to resort to the 
numerical method. There are different numerical 
methods such as the finite difference method 
(FDM), boundary element method (BEM), and 
finite element method (FEM). In this study, we 
use the FEM to obtain numerical solution. In the  
 
 
 

 

 

 

 

 

 

 

 

 

Figure 2. FEM mesh used in the present study. 
Locations of the electrodes are marked with 
darkened elements. 

FEM, the object area is discretized into small 
elements having a node at each corner, as shown 
in Figure 2. And, with the aid of Figure 3, the 
effective conductivity value σ  of element  
which is intercepted by the region boundary C  
can be expressed as [9]  
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where  denotes the area. The value of σ  is the 
conductivity in the region , which is closed by 
the curve C , and  

S l

lS

l rσ  is the conductivity in the 
surrounding region S , as shown in Figure 3. So, 
the resistivity distribution within an element can 
be assumed to be constant and the standard FEM 
can be used to calculate the boundary potential. 
By employing FEM, the potential at each node is 
calculated by discretizing Eq. (1) into Yv , 
where Y  is the admittance matrix that is 
a function of resistivity and c  represents the 
current injected into the object. The detailed 
descriptions on the forward problem are given in 
Vauhkonen’s work [10]. 
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Inverse Problem 

The inverse problem of EIT maps the 
boundary voltages to a conductivity distribution, 
which is obtained by minimizing the following 
object functional 
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Figure 3. A schematic representation of FEM 
element eΩ  intercepted by the phase boundary 

( )RCl . 
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( )[ ] ([ UVUV T −−=Φ
2
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where V  is the vector of the measured voltages 
and U  is the vector of the calculated boundary 
voltage. In conventional EIT problem, the domain 
is discretized into small elements, in each of 
which the conductivity is assumed to be constant. 
The inverse problem of EIT is to find the 
conductivity value of each small element. 
Because of the mismatch between the FEM mesh 
structure and the real phase distribution, the 
blurred image is unavoidable even though the 
system is composed of only two phases and the 
error-free synthetic data is used as the measured 
voltage vector. In fact, our major concern in the 
application of EIT to visualization of two-phase 
flows is to reconstruct the phase boundaries rather 
than the conductivity value of each phase. So, we 
reformulate the EIT inverse problem into a 
boundary estimation one. If we choose M  points 
spacing equivalently along the polar angle in the 
frame of polar coordinate, the angle position will 
be 
 

MkMkk ,,2,1,/)1(2 L=−π=θ .                   (8) 
 
The set of front points, , is defined as follows: R
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where  is the distance of the k-th front point 
measured from the fixed center of the reference 
coordinate (0,0). To express the boundary with 
the discrete front points, an interpolation is  

 
Figure 4. Phase boundary approximated by front 
points. 

required. In this paper Fourier interpolation is 
used. Figure 4 shows an example of boundary 
approximation with front-point concept. 

The mapping F  from the coefficients r 's to 
the measured potential is highly nonlinear. We 
linearize the mapping F at a certain 

point  to obtain 

k

URk →:
*
kR
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where are the calculated potentials 

corresponding to R  and 
*U

*
k RU ∂∂=

k

FJ  is the 
Jacobian matrix. It is well-known that the inverse 
EIT problem suffers from ill-posedness and this 
ill-posedness can be mitigated by the 
regularization [1,10]. Then, the iterative equation 
for the incremental change of R  is obtained by 
using Levenverg –Marquardt regularization as 
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where  is the measured voltages. There are 
several methods for choosing in some sense 
optimal regularization parameters κ . However, 
the different criteria will yield results of different 
optimality. Since the true distributions in the 
present study are known, the regularization 
parameter is chosen to obtain the best 
reconstructed images. So, the regularization 
parameter is set to 

V

05.0=κ .  
In every iteration of inverse problem, we have 

to solve the forward problem in order to obtain 
the boundary voltages and the Jacobian matrix. 
There are several methods to calculate the 
Jacobinan matrix in standard EIT problems, 
where Jacobian means the change of boundary 
voltages with respect to the change of the 
resisitivity distribution, that is ( ) ee UJ σ∂∂=σ .  
However, in this study, the standard perturbation 
method has been employed to calculate the 
Jacobian matrix, ( )RFJ , since the analytic method 

are not well-established. The column of J  of 
 are obtained by perturbing each of the 

coefficient  by predetermined small δ  and 
calculating the changes of resulting voltages on 
the boundary. 
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where  is the resulting voltage difference 
vector. 
 
NUMERICAL SIMULATIONS 

Unlike many other types of imaging 
techniques, making general statements about the 
limitations of imaging with EIT is difficult. The 
resolution of the EIT system depends on the 
various variables, such as conductivity contrast 
and distribution, injected current pattern, and the 
errors in current injection and voltage 
measurement. Therefore, to verify the 
appropriateness of the present EIT system, a 
series of simulations should be conducted. 

We consider a circular object of radius 14 , 
which has 16 electrodes along the boundary. The 
domain is discretized into 1968 triangular 
elements in the finite element calculation. The 
resistivity values of the anomaly and the 
background are set to 600  and 

cm

cmcmΩ 300Ω , 
respectively. There are many data collecting 
methods, such as neighboring method, cross 
method, opposite method, multi-reference method 
and adaptive method. The characteristic of these 
methods are summarized in Webster's book [11]. 
Among these, the multi-reference method, where 
desired current distribution can be obtained by 
injecting current through all the electrodes 
simultaneously, is known to be the best one when 
there is no prior information on the conductivity 
distribution. In the present study, currents 
generated by current generation circuit are 
injected into the 16 electrodes simultaneously in 
the following form 
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where and ,,2,1 Ll = 16ll =ζ , and the 
resulting potentials are measured simultaneously 

To investigate the effect of the conductivity 
distribution and the measurement error level on 
the resolution of reconstructed image, we 
consider several artificial conductivity 
distributions and obtain the synthetic boundary 
voltages by using the forward solver described 
earlier. The error is inevitable in reality of EIT 
applications and it will loosen the relationship 

between the injected current patterns and the 
measured boundary voltages. To test the 
robustness of our algorithm against the 
measurement error and to avoid inverse crime, 
image reconstruction of simulated two-phase 
systems is conducted with assuming uniformly 
distributed random error of 1% in voltage 
measurement. 

In Figure 5, we consider an artificial single 
object located at the center. Although it seems to 
be quite simple, this is a very illustrative example 
since the conductivity chage of the centered target  
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Figure 5. Numerical simulation results for the 
simple boundary shape. 
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Figure 6. Numerical simulation results for the 
complicated boundary shape. 
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is very insensitive to the boundary voltages.Also, 
we consider a target located off the center. As 
shown in this figure, the proposed method works 
well even for 1% of measurement error and is 
insensitive to the initial guess. Even if the 
mismatch between the assumed positions of 
object and reconstructed ones is intensified as the 
imposed measurement error increases, the size of 
the object is well reconstructed. Also, more 
complicated geometry is considered in Figure 5.  
As shown in this figure, only small portion of 
dispersed phase boundary is changed, and the 
proposed method reconstructs the size and 
location of dispersed phase, quite well. If we 
formulate a boundary estimation problem for the 
above example based on Fourier series, higher 
mode Fourier coefficients (more than tenth) are 
required [12]. If the boundary is deformed in part 
as in the case of the example, the Fourier 
coefficients should be altered totally. However, in 
the proposed algorithm, only a few front points 
need to be modified. This is one of major 
advantages of this method over the previous 
methods, such as boundary estimation based on 
Fourier series. 

The root mean square error (RMSE) defined 
as 
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Figure 7. RMSE values for the case of Figure 6.  

is plotted for the one target system given in 
Figure 6. As shown in Figure 7, the RMSE 
decreases rapidly for the first two iteration, and 
shows nearly constant values after the third 
iteration. Other examples also exhibit the similar 
trends. Hence, the quality of reconstructed image 
doesn’t improve after several iteration steps, and 
the maximum number of iterations is set to 10. 
 
CONCLUSIONS 

The present work intends to apply the EIT 
technique to the visualization of two-phase flow 
system. An algorithmic study is conducted to 
estimate the phase boundary by EIT. To resolve 
the problem that the conventional EIT can hardly 
detect the interfacial boundaries due to its 
inherent diffusive characteristic in the inverse 
estimation of conductivity distribution, resulting 
in the blurredness in reconstructed images, we 
reformulate the EIT inverse problem as the 
boundary estimation problem. The boundary is 
approximated as an interpolation of front points 
rather than Fourier coefficients and the position of 
the front points are tracked with the Newton-
Raphson method. The reconstructed images based 
on our boundary estimation algorithm show that 
the phase boundary can be identified by the 
proposed method. It is expected that the EIT can 
be used to monitor various process systems where 
the two-phase and/or two-component transport 
exists. 
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